Distribution based truncation for variable selection in subspace methods for multivariate regression
نویسندگان
چکیده
منابع مشابه
Variable Selection for Multivariate Logistic Regression Models
In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...
متن کاملTruncation Strategies for Optimal Krylov Subspace Methods∗
Optimal Krylov subspace methods like GMRES and GCR have to compute an orthogonal basis for the entire Krylov subspace to compute the minimal residual approximation to the solution. Therefore, when the number of iterations becomes large, the amount of work and the storage requirements become excessive. In practice one has to limit the resources. The most obvious ways to do this are to restart GM...
متن کاملBayesian variable selection for multivariate spatially varying coefficient regression.
Physical activity has many well-documented health benefits for cardiovascular fitness and weight control. For pregnant women, the American College of Obstetricians and Gynecologists currently recommends 30 minutes of moderate exercise on most, if not all, days; however, very few pregnant women achieve this level of activity. Traditionally, studies have focused on examining individual or interpe...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولRandom subspace method for multivariate feature selection
In a growing number of domains the data collected has a large number of features. This poses a challenge to classical pattern recognition techniques, since the number of samples often is still limited with respect to the feature size. Classical pattern recognition methods suffer from the small sample size, and robust classification techniques are needed. In order to reduce the dimensionality of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemometrics and Intelligent Laboratory Systems
سال: 2013
ISSN: 0169-7439
DOI: 10.1016/j.chemolab.2013.01.008